Grundkompetenz AN3 Ableitungsfunktion und Stammfunktion

Beispiele aus Maturaterminen Mai 2024 – Mai 2025 (AHS, BHS, Kompensationsprüfungen AHS)

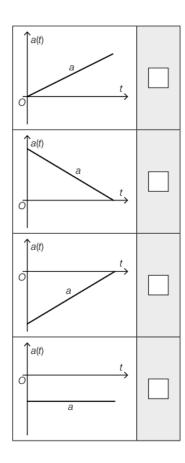
TYP-1:

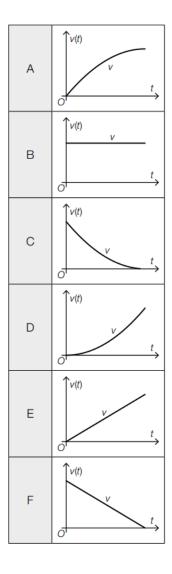
Geschwindigkeit und Beschleunigung

In den unten stehenden Abbildungen sind vier Graphen von Beschleunigungsfunktionen und sechs Graphen von Geschwindigkeitsfunktionen in Abhängigkeit von der Zeit t dargestellt (jeweils im gleichen Zeitraum).

Aufgabenstellung:

Ordnen Sie den vier Graphen von Beschleunigungsfunktionen jeweils den zugehörigen Graphen der Geschwindigkeitsfunktion aus A bis F zu.





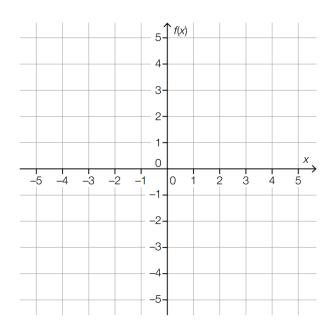
Polynomfunktion dritten Grades

Gegeben ist eine Polynomfunktion 3. Grades f, für die gilt:

- f(1) = 2
- f'(1) = 0
- f''(1) = 0

Aufgabenstellung:

Skizzieren Sie im nachstehenden Koordinatensystem den Funktionsgraphen einer solchen Polynomfunktion 3. Grades.



Differenzieren

Gegeben sind die Polynomfunktionen f, g und h.

Es gilt für alle $x \in \mathbb{R}$:

$$h(x) = f(x) + 2 \cdot g(x)$$

$$f(2) = 1, f'(2) = 3$$

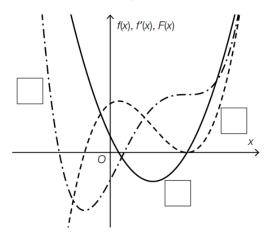
$$g(2) = 1$$
, $g'(2) = -2$

Aufgabenstellung:

Ermitteln Sie h'(2).

Ableitungsfunktion und Stammfunktion

Die nachstehende Abbildung zeigt den Graphen der differenzierbaren Funktion $f: \mathbb{R} \to \mathbb{R}$, den Graphen ihrer Ableitungsfunktion f' und den Graphen einer Stammfunktion F von f.

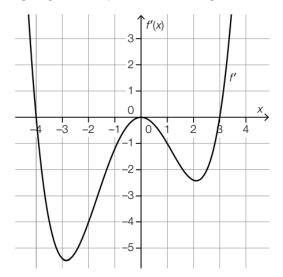


Aufgabenstellung:

Tragen Sie in der obigen Abbildung f, f' und F in die dafür vorgesehenen Kästchen ein.

Ableitungsfunktion

Die nachstehende Abbildung zeigt den Graphen der Ableitungsfunktion f' einer Polynomfunktion f.



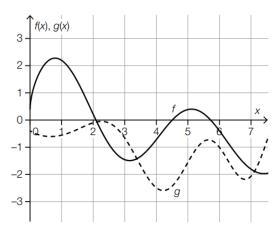
Aufgabenstellung:

Kreuzen Sie die beiden zutreffenden Aussagen an. [2 aus 5]

Die Funktion f hat im Intervall [-4; 3] mindestens 3 lokale Extremstellen.	
Die Funktion <i>f</i> ist im Intervall (–4; 0) streng monoton fallend.	
Die Funktion f hat mindestens 3 Wendestellen.	
Die Funktion f hat im Intervall [-4; 3] mindestens 3 Nullstellen.	
Die Funktion f hat an der Stelle $x = 0$ eine lokale Maximumstelle.	

Ableitungen zweier Funktionen

Nachstehend sind die Graphen der zwei zweimal differenzierbaren reellen Funktionen f und g dargestellt.



Aufgabenstellung:

Kreuzen Sie die beiden zutreffenden Aussagen an. [2 aus 5]

g'(1) > 1	
f'(3) > g'(3)	
f'(5) > g'(5)	
f''(1) > g''(1)	
f''(3) > g''(3)	

Eigenschaften von quadratischen Funktionen

Gegeben sind zwei quadratische Funktionen f und h. Für alle $x \in \mathbb{R}$ gilt: f'(x) = h'(x) und f(x), h(x) > 0

Aufgabenstellung:

Kreuzen Sie die beiden auf jeden Fall zutreffenden Aussagen an. [2 aus 5]

Für alle $x \in \mathbb{R}$ gilt: $h''(x) < 0$	
h' ist streng monoton fallend.	
Es gibt eine Zahl $c \in \mathbb{R}$ so, dass für alle $x \in \mathbb{R}$ gilt: $f(x) - h(x) = c$	
h' ist eine lineare Funktion, deren Graph durch den Punkt (0 0) verläuft.	
f' hat eine Nullstelle.	

Aufgaben BHS - Matura

Lösungen Aufgabenpool BHS: https://prod.aufgabenpool.at/amn/index.php?id=AM

Blutzuckerwerte

Viele Menschen müssen ihre Blutzuckerwerte regelmäßig messen. Der Blutzuckerwert wird üblicherweise in der Einheit Milligramm pro Deziliter (mg/dl) angegeben.

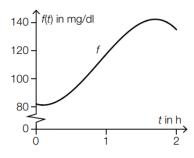
a) Lisa und Nino messen ihre Blutzuckerwerte durchgehend mittels eines Sensors am Oberarm.

Der Verlauf des Blutzuckerwerts von Lisa in einem Zeitraum von 2 Stunden kann näherungsweise durch die Polynomfunktion *f* beschrieben werden.

$$f(t) = -29.9 \cdot t^3 + 80.7 \cdot t^2 - 15.3 \cdot t + 82$$
 mit $0 \le t \le 2$

t ... Zeit in h

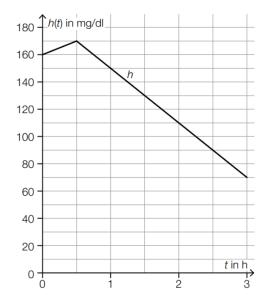
f(t) ... Blutzuckerwert von Lisa zur Zeit t in mg/dl



1) Berechnen Sie denjenigen Zeitpunkt, zu dem der Blutzuckerwert von Lisa am stärksten steigt. Geben Sie das Ergebnis in Minuten an. [0/½/1 P.]

Blutzuckerwerte

b) Der Verlauf des Blutzuckerwerts von Fiona in einem Zeitraum von 3 Stunden kann näherungsweise durch die abschnittsweise definierte Funktion *h* beschrieben werden (siehe nachstehende Abbildung).



t ... Zeit in h

h(t) ... Blutzuckerwert von Fiona zur Zeit t in mg/dl

1) Vervollständigen Sie die nachstehende Funktionsgleichung der 1. Ableitungsfunktion h' durch Eintragen der fehlenden Zahlen.

[0/½/1 P.]

Kompensation AHS

https://www.mathago.at/kompensationspruefung-loesungen/

Mai 2025, Prüfung 1: Steinwurf

a) Selina wirft einen Stein ins Wasser. Die Höhe des Steines über der Wasseroberfläche in Abhängigkeit von der Zeit kann modellhaft durch die Funktion h_1 beschrieben werden.

$$h_1(t) = -5 \cdot t^2 + 3 \cdot t + 10$$

 $t\dots$ Zeit in s mit t=0 für den Zeitpunkt des Abwurfs $h_1(t)\dots$ Höhe des Steines über der Wasseroberfläche zum Zeitpunkt t in m

 Berechnen Sie denjenigen Zeitpunkt, zu dem sich der Stein in einer Höhe von 1 m über der Wasseroberfläche befindet.

Für den Zeitpunkt t_1 gilt:

$$h_1(t_1) = 0$$

 $h_1'(t_1) \approx -14,46$

- 2) Interpretieren Sie die Zahl –14,46 im gegebenen Sachzusammenhang. Geben Sie dabei die zugehörige Einheit an.
- b) Deniz wirft ebenfalls einen Stein ins Wasser. Die Höhe dieses Steines über der Wasseroberfläche in Abhängigkeit von der Zeit kann modellhaft durch die Funktion h_2 beschrieben werden.

$$h_2(t) = -5 \cdot t^2 + b \cdot t + c$$

t ... Zeit in s mit t=0 für den Zeitpunkt des Abwurfs $h_2(t)$... Höhe des Steines über der Wasseroberfläche zum Zeitpunkt t in m

Nach 0,4 s hat der Stein seine maximale Höhe von 3,8 m über der Wasseroberfläche erreicht.

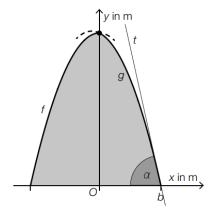
1) Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten b und c.

Mai 2025, Prüfung 2: Weidentunnel

b) Für die Funktion g gilt: $g(x) = -2.5 \cdot x^2 - 0.5 \cdot x + 2$ mit $x \ge 0$

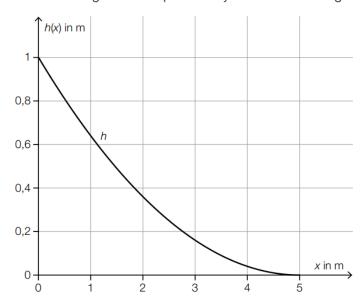
An der Stelle b schließt die Tangente t an den Graphen von g mit der x-Achse den Winkel α ein (siehe nebenstehende Abbildung).

1) Berechnen Sie α .



Jänner 2025, Prüfung 1: Wasserkanal

c) In der nachstehenden Abbildung ist der Graph der Polynomfunktion h dargestellt.



1) Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.

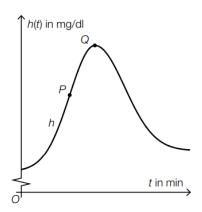
Für die Polynomfunktion h im Intervall [1; 4] gilt: _____ und ____

1)	
h'(x) < 0	
h'(x)=0	
h'(x) > 0	

2	
h''(x) < 0	
h''(x)=0	
h''(x) > 0	

Juni 2024, Prüfung 2: Bananen

c) Tanja beobachtet ihren Blutzuckerspiegel. Der zeitliche Verlauf des Blutzuckerspiegels nach dem Essen einer Banane kann modellhaft durch die Polynomfunktion 4. Grades *h* beschrieben werden.



t ... Zeit in min mit t = 0 für den Beobachtungsbeginn h(t) ... Blutzuckerspiegel zur Zeit t in mg/dl

Auf dem Graphen der Funktion h sind die zwei Punkte $P=(t_P|h(t_P))$ und $Q=(t_Q|h(t_Q))$ eingezeichnet.

1) Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.

Im Punkt *P* gilt: _____ und im Punkt *Q* gilt: _____ .

1	
$h'(t_P) > 0$	
$h'(t_P)=0$	
$h'(t_P) < 0$	

2	
$h''(t_Q) > 0$	
$h''(t_Q) = 0$	
$h''(t_Q) < 0$	