Lineare Gleichungen und Gleichungssysteme in zwei Variablen

1. LINEARE GLEICHUNGEN IN ZWEI VARIABLEN

 $a \cdot x + b \cdot y = c$ mit $a, b, c \in \mathbb{R}$; $a, b \neq 0$

wird lineare Gleichung in zwei Variablen genannt.

🗓 SCAN ME Video 1/9

Jedes Zahlenpaar (x|y), das diese Gleichung erfüllt, ist eine Lösung dieser Gleichung.

Bsp. 1) Gib drei verschiedene Lösungen zu folgender Gleichung an: 2x - 4y = 8 $L_1 = \underbrace{\{(6/1)\}^2} \qquad L_2 = \underbrace{\{(0/-2)\}^2} \qquad L_3 = \underbrace{\{(1/4/5)\}^2}$

Bsp. 2) Bei einer Feier gibt es x Tische mit fünf Plätzen und y Tische mit acht Plätze. Bei der Feier sind insgesamt 200 Personen geladen. Stelle den Sachverhalt durch eine lineare Gleichung in zwei Variablen dar.

Gib 3 Möglichkeiten an, auf wie vielen Tischen (fünf Plätze bzw. acht Plätze) die geladenen Gäste aufgeteilt werden 5x +8y=200

0x=40x=0 (3x=8x=20

2 x = 24, y=10

Eine lineare Gleichung in zwei Variablen kann in zwei Formen angegeben werden:

- allgemeine Form: $a \cdot x + b \cdot y = c$ $z \cdot B \cdot 6x + 2y = 13$
- Hauptform: $y = -\frac{a}{b} \cdot x + \frac{c}{b}$ $(b \neq 0)$ z.B. $y = -3x + \frac{13}{2}$

Beweis: Forme die allgemeine Form $a \cdot x + b \cdot y = c$ auf y = um.

Oxtby=C 1-0x

by=-ax+clib

 $y = -\frac{c}{b} \times + \frac{c}{b}$ **Bsp. 3)** Wandle die Gleichung in die **Hauptform** um. Ist es möglich? Begründe deine Antwort.

a. 3x + 9y = 27 -3 **b.** 10x = 15

c. $\frac{4}{8}x + \frac{3}{4}y = 8$ d. 0.3y = 9

9y=-3x+27 NEIN 4x+6y=64/2 Y=30

2x+3y=321-2x

3v=-2x+321:3

Bsp. 4) Haben folgende Gleichungen dieselbe Lösungsmenge? Begründe deine Antwort.

 $-6x + 18y = 2 \sqrt{8} \quad x = 3y - \frac{1}{3}$ 18x - 36y = -4 + 36y

-6x = -18y + 21.60 $\times = 3y - \frac{4}{3}$ $\times = 36y - 41.18 \text{ M}$ $\times = 3y - \frac{4}{3}$ $\times = 2y - \frac{4}{18}$ $\times = 2y - \frac{4}{18}$ $\times = 2y - \frac{4}{18}$ $\times = 2y - \frac{4}{18}$

2. LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN

Fasst man zwei lineare Gleichungen mit zwei Variablen zusammen, so erhält man ein so genanntes **lineares Gleichungssystem** in zwei Variablen.

$$|: a \cdot x + b \cdot y = c$$

$$||: d \cdot x + e \cdot y = f \qquad (a, b, c, d, e, f \in \mathbb{R})$$

Video 2/9

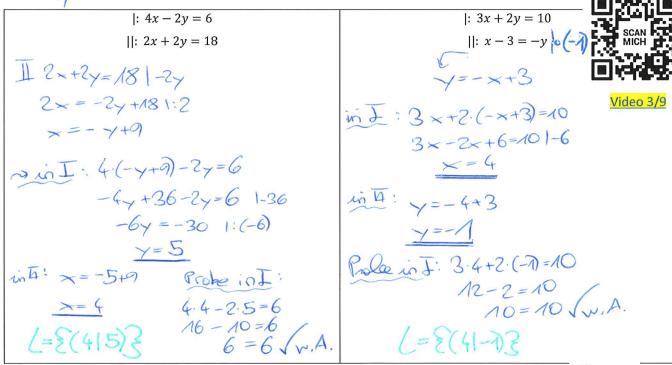
Mit folgenden Verfahren können lineare Gleichungssysteme gelöst werden:

2.1 EINSETZUNGSVERFAHREN (SUBSTITUTIONSMETHODE)

In einer Gleichung wird eine Variable ausgedrückt. Dieser Term ersetzt die Variable in der anderen Gleichung.

	: x + 3y = 10	
	: 2x + 5y = 24	
1)	Eine Gleichung nach einer Variablen (x oder y) auflösen. In diesem Beispiel lösen wir die 1. Gleichung nach x auf.	$: x + 3y = 10 \Leftrightarrow x = 10 - 3y$
2)	Den Term für diese Variable in die andere Gleichung einsetzen. D.h. wir setzen $x = 10 - 3y$ in die 2. Gleichung statt dem x ein.	: $2 \cdot (10 - 3y) + 5y = 24$
	Das Schwierigste ist geschafft! Ab jetzt entspricht es dem Lösen einer	linearen Gleichung in 1 Variablen .
3)	Die Gleichung nach der enthaltenen Variablen auflösen .	: $20 - 6y + 5y = 24 \Leftrightarrow$: $-y = 4 \Leftrightarrow$: $y = -4$
4)	Die Lösung in die umgeformte Gleichung aus Schritt 1 einsetzen und so die zweite Variable berechnen. Wir setzen $y=-4$ in $x=10-3y$ ein.	$x = 10 - 3 \cdot (-4) \iff x = 22$
5)	Mache die Probe . WICHTIG: Verwende immer die Gleichung, die du im Schritt 4 NICHT benutzt hast!	in : $2 \cdot 22 + 5 \cdot (-4) = 24$ 44 - 20 = 4 4 = 4 w.A.
6)	Die Lösung besteht aus dem Zahlenpaar (x y).	$x = 22, y = -4$ $L = \{(22 -4)\}$

Bsp. 5 Löse mithilfe des Einsetzungsverfahrens:

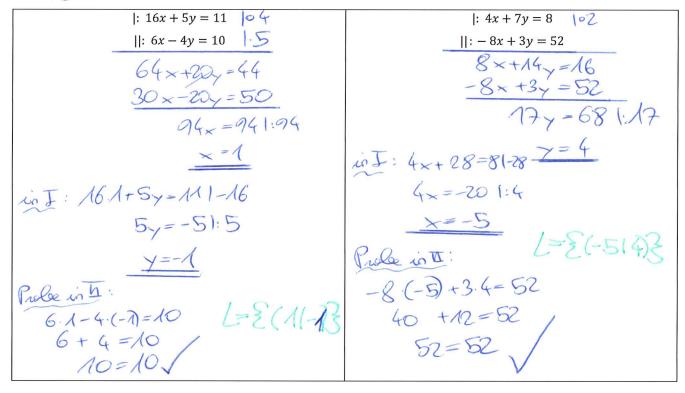


2.2 Additionsverfahren (Eliminationsmethode)

Es wird mit geeigneten Zahlen so multipliziert, dass bei der anschließenden Addition der beiden Gleichungen eine Variable wegfällt.

		[22] ([0.98,795)
	: 6x + 7y = 29	
	: 3x - 5y = 6	Video 4/9
1)	Entscheide, welche Variable (x oder y) du eliminieren willst und überlege, was du tun musst, damit die Variable wegfällt.	: 6x + 7y = 29 $: 3x - 5y = 6 \cdot (-2)$
	Bemerkung 1 : In diesem Fall wird die zweite Gleichung mit (-2) multipliziert, sodass bei der Addition der Gleichungen, die x-Variable eliminiert wird.	: 6x + 7y = 29 : -6x + 10y = -12
	Bemerkung 2: Es kann vorkommen, dass du auch beide Gleichungen mit einer Zahl einmultiplizieren musst!	17y = 17
2)	Addiere nun die erste mit der zweiten Gleichung, sodass eine Variable wegfällt.	
3)	Löse die erhaltene Gleichung auf.	17y = 17 :17 $y = 1$
4)	Setze die berechnete Variable in eine der angegebenen Gleichungen ein, um die zweite Variable berechnen zu können.	$: 6x + 7 \cdot 1 = 29 \Leftrightarrow x = \frac{11}{3}$
5)	Mache die Probe . WICHTIG: Verwende immer die Gleichung, die du im Schritt 4 NICHT benutzt hast!	$in \mid \mid : 3 \cdot \frac{11}{3} - 5 \cdot 1 = 6$ 11 - 5 = 6 $6 = 6 \ w. A.$
6)	Die Lösung besteht aus dem Zahlenpaar (x y).	$x = \frac{11}{3}, y = 1$ $L = \{(\frac{11}{3} 1)\}$

Bsp Löse mithilfe des Additionsverfahrens:



TIPP - So funktioniert es immer: Multipliziere die 1. Gleichung mit dem x-Koeffizienten (oder y) der 2. Gleichung und die 2. Gleichung mit dem negativen x-Koeffizienten (oder y) der 1. Gleichung.

THEORIE: Lineare Gleichungen und Gleichungssysteme

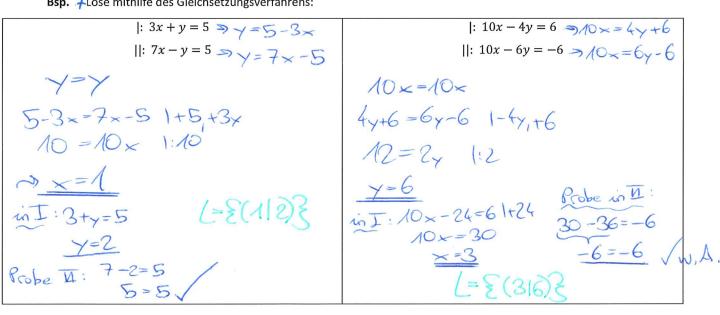
Seite 3

2.3 GLEICHSETZUNGSVERFAHREN (KOMPARATIONSMETHODE)

Aus beiden Gleichungen wird dieselbe Variable ausgedrückt und die Terme werden gleichgesetzt.

	: x + y = 3	
	: x - 20y = -18	Video 5/9
1)	Löse beide Gleichungen nach der gleichen Variable (x oder y) auf. Bemerkung : <i>In diesem Beispiel werden die Gleichungen auf x= umgeformt.</i>	: x = 3 - y : x = 20y - 18
2)	Setze die Gleichungen gleich $(x = x)$. Es entsteht wieder eine lineare Gleichung in 1 Variable.	x = x $3 - y = 20y - 18$
3)	Löse die Gleichung nach der gegebenen Variable auf.	$21 \cdot y = 21 \iff y = 1$
4)	Setze die Lösung in eine der umgeformten Gleichungen aus Schritt 1 ein, um die andere Variable zu erhalten.	$x = 3 - 1 \iff x = 2$
5)	Mache die Probe . WICHTIG: Verwende immer die Gleichung, die du im Schritt 4 NICHT benutzt hast!	$in \mid \mid : 2 = 20 \cdot 1 - 18$ $2 = 2 \ w.A.$
6)	Die Lösung besteht aus dem Zahlenpaar (x y).	$x = 2, y = 1$ $L = \{(2 1)\}$

Bsp. Löse mithilfe des Gleichsetzungsverfahrens:



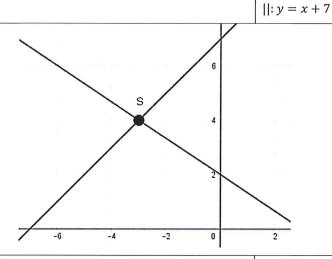
Bsp. \mathcal{S} Löse <u>intelligent</u> mithilfe des Gleichsetzungsverfahrens. Was kannst du gleich setzen?

||:
$$x - y = -7$$

1) Forme beide Gleichungen auf die Form $y=k\cdot x+d$ um und zeichne die beiden Graphen

 $|: y = -\frac{2}{3}x + 2$

Vide



2) Ermittle die Lösungsmenge:

- a. 1 Lösung: Es gibt einen Schnittpunkt
- b. Unendlich viele Lösungen: Die beiden Geraden sind ident.
- c. Keine Lösung: Die Geraden verlaufen parallel.

$$S = (-3|4)$$

$$x = -3$$
 & $y = 4$

Bsp. 7 Löse das Gleichungssystem graphisch.

$$|: 5x - 3y = 2$$

$$||: 2x + 3y = 5|$$

3. LÖSUNGSMÖGLICHKEITEN EINES LINEAREN GLEICHUNGSSYSTEMS

Die Lösungen eines linearen Gleichungssystem sind alle Zahlenpaare (x|y), die beide Gleichungen erfüllen.

- Eine Lösung: 1 Zahlenpaar
- Keine Lösung: kein einziges Zahlenpaar
- Unendlich viele Lösungen: unendlich viele Zahlenpaare

Video 7/9

	1. Fall genau 1 Lösung	2. Fall keine Lösung	3. Fall unendlich viele Lösungen
Beispiel:	I: y = 0.5x + 1 $II: y + 3x = 8$ Lineare unabhängige Gleichungen	I: 2y - x = 2 $II: 2y - x = 4$ widersprüchlich	I: 2y - x = 2 $II: 4y - 2x = 4$ $I ist ein Vielfaches von II$ (linear abhängig)
Einsetzungs-, Additions- und Gleichsetzungsverfahren	x = 2 und $y = 2$	Falsche Aussage wie z.B. $0 = 2$	Eine wahre Aussage wie z.B. $0 = 0$
Graphisches Verfahren:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3 2 0 1 2 3 4
Lösungen:	Genau eine Lösung: $x = 2$ und $y = 2$	Keine Lösung	Unendlich, viele Lösungen z.B. (0 1); (2 2); (4 3);
Lösungsmenge:	$L = \{(2 2)\}$	$L = \{\}$	$L = \{(x y) 2y - x = 2\}$

Vorgehensweise - Lösungsfälle bestimmen

- **1. Fall (1 Lösung):** Die Variablen **x** und **y** sind keine Vielfachen voneinander. D.h. egal mit welchen Zahlen die Gleichungen ein-multipliziert werden, die Variablen x und y sind in beiden Gleichungen immer <u>verschieden</u>.
- **2. Fall (Keine Lösung):** Die Variablen **x** und **y** müssen bei beiden Gleichungen entweder <u>ident</u> oder <u>Vielfache</u> voneinander sein. Wichtig ist, dass die <u>Lösungszahlen</u> bei den Gleichungen <u>keine</u> <u>Vielfache</u> sind!

3. Fall (Unendlich Viele Lösungen): Die beiden Gleichungen sind <u>Vielfache voneinander</u>. Der Unterschied zum 2.Fall ist, dass nun auch die Lösungszahlen auch übereinstimmen müssen!

Video 8/9

Bsp. 10 Wie viele Lösungen treten bei folgenden Gleichungssystemen auf? (Du brauchst die Lösungsfälle nicht berechnen!)

: 2x + 3y = 7 : 3x + 6y = 9	: 2x + 3y = 7 : 4x + 6y = 14	: $6x + 12y = 7$: $3x + 6y = 3$
=) / Losung	OpendCich v. L.	Keine L.
: -3x - 2y = -9 : $3x + 2y = 9$: -4x - 5y = 3 $: -8x + 10y = 2$: -4x - 3y = 7 : -8x - 6y = 14
Opendlich v.L.	1 Losung	Unenollich v.L.

THEORIE: Lineare Gleichungen und Gleichungssysteme

Bsp. (1) Vervollständige so, dass der gewünschte Lösungsfall eintritt. Gib an, welche Bedingungen für die gegebenen Variablen gelten müssen.

1 Lösung	Keine Lösung	Unendlich viele Lösungen
3 (: $2x + 3y = 7$) : $6x + cy = 9$)	: x - 2y = 3 : -3x + 6y = d	: x + 2y = 7 : 4x + 8y = d
C+9	d + -9	d=28
: 3x + cy = 2 : -12x + 3y = d	$ 4x + 5y = 3 \\ cx - 20y = d $	(x) (x + cy = 19) $ (x) + (x + cy = 19)$ $ (x) + (x + cy = 19)$ $ (x) + (x + cy = 19)$
C + - 3 +	C=-16	C=-2
d Colieloig	d + -12	d=-38
c cx - 10y = -10 c 3x - 2y = d c c c c c c c	(-4) (-4) (-4)	c cx - 6y = 12 c 4x + y = d
C + 15 of Reliebing	$C = -16$ $0 \neq -4$	C = -24 $d = -2$
5 2x + cy = -1 10x + 5y = d 5	: -13x + cy = d $: x - 2y = -3$	(-6) : -12x + 18y = 60 $: 2x + cy = d$
C+1 d beliefoig	$C = 26$ $d \neq 39$	C=-3 $d=-10$

Bsp.12) Welches Lösungsverfahren bietet sich am besten an? Löse das Gleichungssystem und gib die Lösungsmenge an.

