5.2 Statistische Kennzahlen (Lösungen)

Lösungen Maturaaufgaben: 1) Gehe zum Aufgabenpool Mathematik BHS: https://prod.aufgabenpool.at/amn/index.php?id=AM 2) Gib im Feld "Titel-/ID-Suche" die Nummer ein. Du kommst zur zugehörigen Aufgabe. Die Lösungen sind bei der Aufgabe enthalten. Deskriptor Schlagwortsuche Aufgabentyp Titel-/ ID-Suche Baseball * (A_237) Nummer

Bsp. 1)

Bsp. 2)

Bsp. 3)

Bsp. 4)

$$15,40 \times = 308 | 1.15,4$$

 $\times = 20 SUS$

Bsp. 5)

Summe (13) =
$$13.295 = 38,35$$

 $\frac{+3,58}{41,93}$ $\Rightarrow = \frac{41,93}{14} \approx \frac{2,995}{m}$

Bsp. 6)

b. Ein weiterer Jugendlicher ist übergewichtig und wiegt 113,8 kg. Berechne das arithmetische Mittel aller Jugendlichen. Um wie viele % steigt das arithmetische Mittel an?

New Summe =
$$441+M3$$
, $8=554$, $8=564$, $8=79$, 3 kg

 $G=73$, 5 kg

 $A=G$, 6 $9=100$, $A=79$, 6 kg

 $A=79$, 6 kg

 $A=79$, 6 kg

Bsp. 23) Kreuze die beiden zutreffenden Aussagen an.

 $A=79$, $A=$

of
$$1,2,2,3,3,3,4,4,5,6,7,8$$
 or $1,2,2,3,3,3,4,4,5,6,7,8$ or $1,2,2,3,3,3,4,4,5,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,3,4,4,6$ $1,2,3,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$ $1,2,3,4,4,6$

Bsp. 8)

Aufgabe: Bestimme das arithmetische Mittel und den Median der erreichten Punktzahl.

Bsp. 9)

Der Median gibt stets den mittleren Wert einer der Größe nach geordneten Datenreihe an.	0
Vergrößert man alle Werte einer Datenreihe x_1,x_2,\dots,x_n um 10, so vergrößert sich der Median um 10.	×
Vergrößert man alle Werte einer Datenreihe x_1, x_2, \dots, x_n um 3, so bleibt der Median gleich.	0
Ist bei einer geordneten Datenreihe die Anzahl der Daten ungerade, so entspricht der Median dem mittleren Wert der Datenreihe.	X
Eine Datenreihe x_1, x_2, \dots, x_n ist gegeben. Vergrößert man den letzten Wert um x_n , so steigt der Median auch an.	0

Bsp. 10)

Datenreihe 1: 3, 4, 6, 8, 10, 15

Datenreihe 2: 17, 28, 39, 58, 68, 75

a. Bestimme jeweils das arithmetische Mittel und den Median.

b. Bei beiden Datenreihen kommt jeweils ein Ausreißer hinzu. Berechne erneut das arithmetische Mittel und den Median.

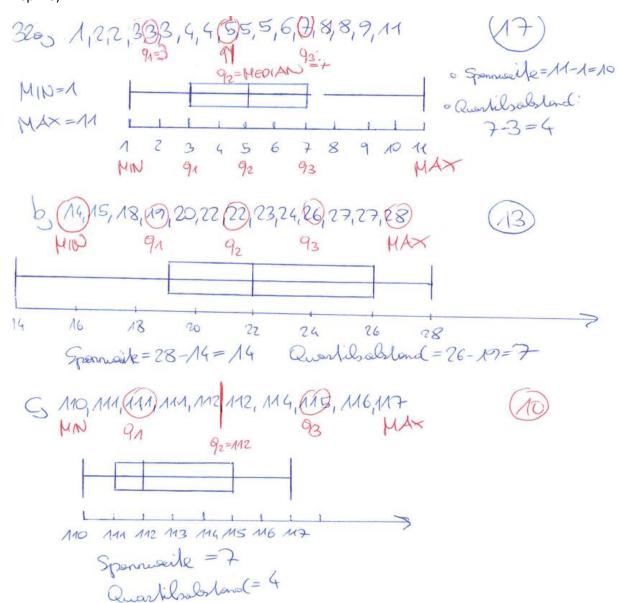
Datenreihe 1: 3, 4, 6(8,10, 15, 266

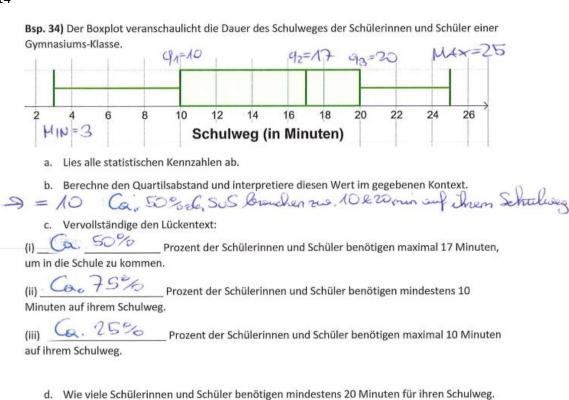
Datenreihe 2: 17, 28, 39, 68, 68, 75, 10 398

c. Was fällt dir auf? Welche Auswirkungen hat ein Ausreißer auf das arithmetische Mittel bzw. den Modus?

· Ein Ausreißen hat auf des vilhem. Millel große Ausreichungen , Der Median werandert sich maximal nur Geningfrigig.

Bsp. 11)


Der Median wird durch einen Ausreißer nach oben stärker beeinflusst als das arithmetische Mittel.	0
Das arithmetische Mittel beschreibt den mittleren Wert einer Datenreihe.	0
Ein Ausreißer hat keine Auswirkung auf den Median.	0
Ein Ausreißer hat große Auswirkungen auf das arithmetische Mittel.	X
Vergrößert man alle Werte einer Datenreihe x_1, x_2, \dots, x_n um 2, so vergrößert sich der Median nicht.	0


Bsp. 12)

Bsp. 29) Bestimme den Modus der Datenreihe.

a. Datenreihe 1(3) 5, 1, 6, 2, 3, 4, 2, 7, 8, 4, 3 \rightarrow MODUS = 3

b. Datenreihe 2: 14, 18, 22, 27, 19, 22 28, 24 > HOD US = 22
c. Datenreihe 3: 110, (11) (11) (11) (112, 114, 116, 112, 115, 117 > HODUS = ///

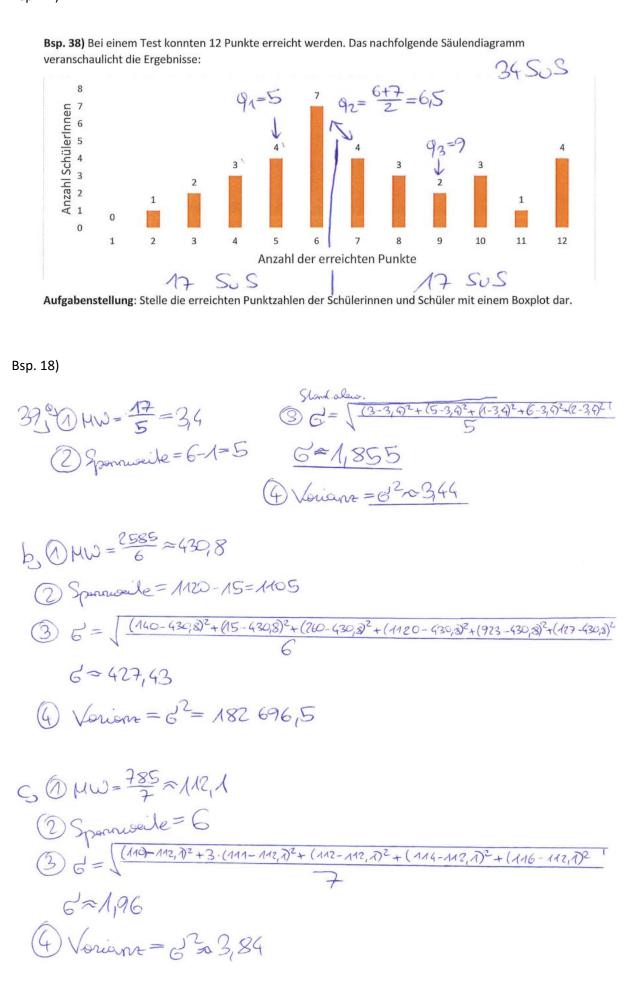
Absolute HF konnen sus den Berphot nicht ernitbell seite 22 von 27

THEORIE: Beschreibende Statistik

SA
MIN, MAX, 91, 92= MEPIAN, 93
SPANNW, QUARTILSABSTAN C

DEN orithm. Miller, Marles

Bsp. 16)


	Korpergroise (weiblich)						
1	1 1	-		92	84	23	MINIGA, MAX

a. Lies die statistischen Kennzahlen der beiden Boxplots ab. Beschreibe Unterschiede bzw.
Gemeinsamkeiten.
92 Seich 193 Seich!
b. Kreuze zutreffende Aussagen an.

Ca. 25 % der Frauen sind mindestens 178 cm groß.	×
Die Spannweite bei den Männern ist kleiner als bei den Frauen.	0
Obwohl das Maximum bei den Frauen geringer ist, ist der Median bei beiden Datenreihen gleich.	×
50 % der Männer weisen eine Größe zwischen 172 cm und 178 cm auf.	0
Mindestens ein Mann ist größer als 189 cm.	×
Die Körpergröße von ca. 50 % der Männer beträgt mindestens 176 cm.	×
Der Quartilsabstand ist bei den Frauen größer.	X
Mindestens ein Viertel der Frauen sind 170 cm oder kleiner.	×
Genau 25 % der Männer sind maximal 172 cm groß.	0

c. Kannst du aus dem Boxplot herauslesen, wie viele Frauen kleiner als 176 cm sind?

Bsp. 19)

+ größer - kleiner = bleibt gleich	Arithmetisches Mittel	Median	Spannweite	Standardabweichung	Minimum
Aufgabe a	~	=	+	+	_
Aufgabe b	+	+	=	=	+
Aufgabe c	+	=	+	+	=
Aufgabe d	=	=	+	+	_
Aufgabe e	+	+	-(-	+	+
Aufgabe f	=	=	=	_	_

Bsp. 20)

Der Quartilsabstand wird stärker durch einen Ausreißer nach oben beeinflusst als die Spannweite.	0
Die Standardabweichung beschreibt, wie stark die Daten um das arithmetische Mittel streuen.	X
Ein Ausreißer hat keine Auswirkung auf die Standardabweichung.	0
Die Spannweite, die Varianz, die Standardabweichung und der Quartilsabstand sind Kennzahlen für die Streuung der Daten.	X
Vergrößert man alle Werte einer Datenreihe x_1,x_2,\dots,x_n um 2, so vergrößert sich die Standardabweichung auch um 2.	0